Mo $K\alpha$ radiation

 $0.24 \times 0.21 \times 0.12 \text{ mm}$

 $\mu = 0.81 \text{ mm}^-$

T = 295 K

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl (Z)-4-ferrocenyl-2-(4-hydroxyanilino)-4-oxobutenoate

Bei-Bei Zhu,^a Yao-Cheng Shi,^b* Feng-Min Zhang,^c Li-Min Yuan^c and Qian-Kun Li^d

^aDepartment of Chemical Engineering, Nantong Vocational College, Nantong 226007, People's Republic of China, ^bCollege of Chemistry and Chemical Engineering, Yangzhou University, 180 SiWangTing Road, Yangzhou 225002, People's Republic of China, CTesting Center, Yangzhou University, Yangzhou 225009, People's Republic of China, and ${}^{\mathbf{d}}\!\mathsf{Hubei}$ Research Institue of Geophysics Survey and Design, Wuhan 430056, People's Republic of China Correspondence e-mail: ycshi@yzu.edu.cn

Received 1 October 2011; accepted 10 November 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.061; wR factor = 0.172; data-to-parameter ratio = 16.0.

In the title compound, $[Fe(C_5H_5)(C_{17}H_{16}NO_4)]$, the O=C-C = C - N mean plane is twisted with respect to the mean planes of the benzene and substituted cyclopentadienyl rings by 44.2 (2) and 13.8 $(3)^{\circ}$, respectively. Furthermore, the O = C - C = C - N mean plane and the O = C - O(ester) plane make a dihedral angle of $55.5 (6)^{\circ}$. Consistent with this large dihedral angle, the linking C–C bond [1.507 (6) Å] does not show any (delocalized) double-bond character.

Related literature

For background to the use of enaminones and enamine esters in coordination chemistry, supramolecular chemistry and organometallic chemistry, see: Prokop et al. (2001); Elassar & El-Khair (2003); Kascheres (2003); Shi et al. (2004, 2006, 2008). For related structures, see: Prokop et al. (2001).

Experimental

Crvstal data [Fe(C₅H₅)(C₁₇H₁₆NO₄)]

 $M_r = 419.25$

Monoclinic, $P2_1/c$ a = 15.398 (2) Å b = 11.5131 (15) Åc = 10.9413 (11) Å $\beta = 95.43 \ (2)^{\circ}$ V = 1931.0 (4) Å³

Data collection

	n
diffractometer 2461 reflections with $I > 2\sigma(I)$	
Absorption correction: ψ scan 3 standard reflections every 2	200
(North <i>et al.</i> , 1968) reflections	
$T_{\min} = 0.821, T_{\max} = 0.902$ intensity decay: none	
3787 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	237 parameters
$wR(F^2) = 0.172$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$
3787 reflections	$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the Natural Science Foundation of China (No. 20572091) and Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2460).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
- Elassar, A. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463-8480.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kascheres, C. M. (2003). J. Braz. Chem. Soc. 14, 945-969.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Prokop, P., Gelbrich, T., Sieler, J., Richter, R. & Beyer, L. (2001). Z. Anorg. Allg. Chem. 627, 965-972.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, Y.-C., Cheng, H.-J. & Zhang, S.-H. (2008). Polyhedron, 27, 3331-3336.
- Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15-21.
- Shi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407-m410.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m1761 [doi:10.1107/S1600536811047763]

Ethyl (Z)-4-ferrocenyl-2-(4-hydroxyanilino)-4-oxobutenoate

B.-B. Zhu, Y.-C. Shi, F.-M. Zhang, L.-M. Yuan and Q.-K. Li

Comment

Recently enaminones and related compounds have been used as ligands in coordination chemistry and have been extensively used as versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003; Kascheres, 2003).

It has been shown that primay amines, Ar'NH₂, react smoothly with β -diketones, ArCOCH₂COR, to give enaminones, ArCOCH= C(NHAr')*R*, in good yields (Shi *et al.*, 2004). As part of an ongoing investigation of the chemistry of ferrocenyl enaminones and related compounds (Shi *et al.*, 2006), the title compound, (C₅H₅)FeC₅H₄COCH=C(NHC₆H₄-4-OH)CO₂CH₂CH₃, has been synthesized *via* the reaction of 4-aminophenol with (C₅H₅)FeC₅H₄COCH₂COCO₂CH₂CH₃ and structurally characterized.

As noted in the compounds previously reported, the O=C-C=C-N moiety is planar and the bond lengths indicate electron delocalization (Shi *et al.*, 2004). The O=C-C=C-N plane is twisted with respect to the benzene and substituted cyclopentadienyl rings by 44.2 (2) and 13.8 (3)° whereas the values in an analogous compound are 38.2 (2) and 2.5 (2)° (Prokop *et al.*, 2001). Furthermore, the O=C-C=C-N plane and the O=C-O plane make a dihedral angle of 55.5 (6)° which is greater than that (48.1 (4)°) of the analogous compound. Consistent with the large dihedral angle between the O=C-C=C-N plane and ester group, the C13–C14 bond, is typical of a single bond ($C_{sp2}-C_{sp2}$), and therefore indicates that the ester group is not involved in the conjugation of the O=C-C=C-N moiety. Similarly, the C10–C11 bond suggests that the substituted cyclopentadienyl ring is not involved in the conjugation of the O=C-C=C-N moiety. Similarly, the C10–C11 bond suggests that the substituted cyclopentadienyl ring is not involved in the conjugation of the O=C-C=C-N moiety.

Experimental

A mixture of ethyl 4-ferrocenyl-2, 4-dioxobutanate (1.3 g, 4 mmol) and 4-aminophenol (0.43 g, 4 mmol) in 20 ml of absolute ethanol was refluxed for 18 h. After removal of the solvent, the residue was purified by chromatography on silica gel using diethyl ether and dichloromethane (v/v, 1:10) as an eluant to give the title compound as a purple-red solid (m.p. 412.25-413.65 K, yield 62%). Analysis calculated for C₂₂H₂₁FeNO₄: C 63.03, H 5.05, N 3.34%; found: C 63.12, H 5.27, N 3.31%. IR (KBr): 3401 (*m*, HO), 3078 (*m*, HN),1706 (*s*, O=C), 1592 and 1562 (*vs*, *s*, O=C and C=C) cm⁻¹. UV (λ_{max} , ($\varepsilon \times 10^4$), in DMF): 290 (1.90, *B*-band), 420 (1.37, *K*-band), 574 (0.03, *CT*-band) ¹H NMR (600 MHz, CDCl₃, p.p.m.): δ 11.52 (s, HN), 6.88-6.90, 6.79-6.81 (d, d, 2H, 2H, C₆H₄), 5.94 (s, 1H, HC), 4.83, 4.52 (s, s, 2H, 2H, C₅H₄), 4.23 (s, 5H, C₅H₅), 4.17-4.20 (q, 2H, OCH₂), 1.10-1.13 (t, 3H, CH₃).

Refinement

All H atoms were placed at geometrically idealized positions and subsequently treated as riding atoms at 295 K, with C–H = 0.93 (aryl and alkenyl), 0.96 (CH₃), 0.97 (CH₂), N–H = 0.86 Å, or O–H = 0.82Å and U_{iso} (H) values of $1.2U_{eq}$ (C, N) or $1.5U_{eq}$ (C_{methyl}, O).

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Ethyl (Z)-4-ferrocenyl-2-(4-hydroxyanilino)-4-oxobutenoate

Crystal data [Fe(C₅H₅)(C₁₇H₁₆NO₄)] F(000) = 872 $M_r = 419.25$ $D_{\rm x} = 1.442 \ {\rm Mg \ m^{-3}}$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å a = 15.398 (2) Å Cell parameters from 25 reflections $\theta = 9 - 15^{\circ}$ *b* = 11.5131 (15) Å *c* = 10.9413 (11) Å $\mu = 0.81 \text{ mm}^{-1}$ $\beta = 95.43 \ (2)^{\circ}$ T = 295 KV = 1931.0 (4) Å³ Prism, dark-red Z = 4 $0.24 \times 0.21 \times 0.12 \text{ mm}$

Data collection

Enraf–Nonius CAD-4 diffractometer	2461 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.000$
graphite	$\theta_{\text{max}} = 26.0^\circ, \theta_{\text{min}} = 1.3^\circ$
$\omega/2\theta$ scans	$h = -18 \rightarrow 18$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 14$
$T_{\min} = 0.821, \ T_{\max} = 0.902$	$l = 0 \rightarrow 13$
3787 measured reflections	3 standard reflections every 200 reflections
3787 independent reflections	intensity decay: none

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0754P)^2 + 1.4205P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.86 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	sotropic	or ed	quivalent	isotrop	oic dis	placement	parameters ($(Å^2$)
1		000.000000		0000000000		100000000000000000000000000000000000000	1001.00		p 1010 0		(/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	1.1956 (4)	0.6697 (5)	0.7793 (6)	0.0691 (18)
H1	1.2219	0.6929	0.8554	0.083*
C2	1.1223 (4)	0.5950 (4)	0.7610 (5)	0.0525 (14)
H2	1.0920	0.5600	0.8208	0.063*
C3	1.1049 (3)	0.5853 (4)	0.6308 (5)	0.047
Н3	1.0600	0.5425	0.5896	0.056*
C4	1.1659 (4)	0.6499 (5)	0.5765 (5)	0.0557 (14)
H4	1.1687	0.6568	0.4923	0.067*
C5	1.2226 (4)	0.7033 (5)	0.6658 (6)	0.0630 (16)
Н5	1.2692	0.7518	0.6527	0.076*
C6	1.0226 (3)	0.8596 (4)	0.5648 (4)	0.0393 (11)
Н6	1.0145	0.8506	0.4801	0.047*
C7	1.0875 (3)	0.9262 (4)	0.6291 (5)	0.0447 (12)
H7	1.1294	0.9700	0.5941	0.054*
C8	1.0791 (3)	0.9163 (4)	0.7561 (4)	0.0375 (11)
H8	1.1144	0.9519	0.8189	0.045*
C9	1.0067 (3)	0.8421 (4)	0.7710 (4)	0.0342 (10)
Н9	0.9863	0.8197	0.8448	0.041*
C10	0.9715 (3)	0.8086 (4)	0.6503 (4)	0.0331 (10)
C11	0.8947 (3)	0.7331 (4)	0.6156 (4)	0.0321 (10)
C12	0.8355 (3)	0.7087 (4)	0.7078 (4)	0.0349 (10)
H12	0.8489	0.7360	0.7874	0.042*
C13	0.7605 (3)	0.6466 (4)	0.6807 (4)	0.0345 (10)
C14	0.6966 (3)	0.6412 (4)	0.7768 (5)	0.0410 (11)

C15	0.6789 (4)	0.5986 (5)	0.9858 (5)	0.058
H15A	0.7165	0.6105	1.0611	0.070*
H15B	0.6375	0.6622	0.9774	0.070*
C16	0.6323 (4)	0.4913 (6)	0.9946 (6)	0.073
H16A	0.5875	0.4858	0.9276	0.109*
H16B	0.6063	0.4891	1.0709	0.109*
H16C	0.6719	0.4273	0.9911	0.109*
C17	0.6719 (3)	0.5155 (4)	0.5385 (4)	0.0377 (11)
C18	0.6590 (3)	0.4246 (4)	0.6184 (5)	0.0456 (12)
H18	0.6915	0.4206	0.6944	0.055*
C19	0.5973 (3)	0.3396 (4)	0.5842 (5)	0.0527 (14)
H19	0.5866	0.2808	0.6391	0.063*
C20	0.5514 (3)	0.3418 (4)	0.4682 (5)	0.0500 (13)
C21	0.5663 (3)	0.4315 (4)	0.3901 (5)	0.0458 (12)
H21	0.5362	0.4337	0.3123	0.055*
C22	0.6257 (3)	0.5189 (5)	0.4256 (4)	0.0455 (12)
H22	0.6339	0.5800	0.3723	0.055*
Fe1	1.09728 (4)	0.75507 (5)	0.68129 (6)	0.0320 (2)
N1	0.7364 (2)	0.6016 (4)	0.5704 (4)	0.0428 (10)
H1N	0.7634	0.6281	0.5109	0.051*
01	0.8815 (2)	0.6984 (3)	0.5088 (3)	0.0456 (8)
O2	0.6228 (2)	0.6770 (3)	0.7586 (4)	0.0609 (10)
O3	0.7315 (2)	0.6003 (3)	0.8827 (3)	0.0542 (9)
O4	0.4934 (3)	0.2556 (3)	0.4394 (4)	0.0656 (11)
H4O	0.4609	0.2743	0.3789	0.098*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.067 (4)	0.059 (4)	0.075 (4)	0.026 (3)	-0.028 (3)	-0.021 (3)
C2	0.067 (4)	0.043 (3)	0.048 (3)	0.019 (3)	0.009 (3)	0.006 (2)
C3	0.047	0.033	0.060	0.000	0.009	0.019
C4	0.060 (3)	0.059 (4)	0.050 (3)	0.008 (3)	0.019 (3)	-0.011 (3)
C5	0.038 (3)	0.058 (3)	0.095 (5)	0.005 (3)	0.016 (3)	-0.021 (3)
C6	0.035 (2)	0.044 (3)	0.039 (3)	-0.003 (2)	0.004 (2)	0.005 (2)
C7	0.038 (3)	0.036 (3)	0.060 (3)	-0.008 (2)	0.004 (2)	0.011 (2)
C8	0.045 (3)	0.028 (2)	0.039 (3)	-0.005 (2)	0.000 (2)	-0.003 (2)
C9	0.039 (2)	0.026 (2)	0.038 (3)	-0.0017 (19)	0.007 (2)	0.0042 (19)
C10	0.032 (2)	0.032 (2)	0.036 (2)	0.0021 (19)	0.0079 (19)	-0.003 (2)
C11	0.025 (2)	0.036 (3)	0.035 (2)	-0.0023 (18)	0.0025 (17)	0.002 (2)
C12	0.030 (2)	0.039 (2)	0.036 (2)	-0.0015 (19)	0.0020 (19)	-0.001 (2)
C13	0.029 (2)	0.032 (2)	0.043 (3)	0.0004 (19)	0.010 (2)	0.005 (2)
C14	0.032 (3)	0.035 (3)	0.058 (3)	-0.006 (2)	0.015 (2)	-0.005 (2)
C15	0.058	0.058	0.058	0.000	0.006	0.000
C16	0.073	0.073	0.073	0.000	0.007	0.000
C17	0.024 (2)	0.041 (3)	0.048 (3)	0.0017 (19)	0.004 (2)	-0.004 (2)
C18	0.039 (3)	0.042 (3)	0.055 (3)	0.000 (2)	-0.003 (2)	0.000 (2)
C19	0.048 (3)	0.039 (3)	0.071 (4)	-0.005 (2)	0.008 (3)	0.010 (3)

C20	0.028 (2)	0.040(3)	0.081 (4)		-0.003(2)	0.001 (3)	-0.009(3)
C21	0.034 (3)	0.052 (3)	0.049 (3)		-0.007(2)	-0.004(2)	-0.001(3)
C22	0.040 (3)	0.048 (3)	0.049 (3)		-0.009(2)	0.010 (2)	-0.004(2)
Fe1	0.0290 (3)	0.0303 (3)	0.0369 (4)		-0.0022 (3)	0.0051 (2)	-0.0034 (3)
N1	0.036 (2)	0.052 (3)	0.042 (2)		-0.0086 (19)	0.0096 (18)	-0.0059 (19)
01	0.0419 (19)	0.062 (2)	0.0332 (18)		-0.0151 (17)	0.0043 (14)	-0.0024 (16)
02	0.0313 (19)	0.078 (3)	0.074 (3)		0.0073 (19)	0.0108 (18)	-0.011 (2)
03	0.049 (2)	0.060 (2)	0.057 (2)		0.0072 (18)	0.0193 (18)	0.0076 (19)
O4	0.053 (2)	0.050 (2)	0.091 (3)		-0.017 (2)	-0.010 (2)	-0.003 (2)
Geometric paran	neters (Å, °)						
C1 - C5		1 401 (9)	C1	101		1 234	(5)
C1 = C3		1.401(9) 1.418(8)		1 - 01 1 - 01	2	1.234	(5)
C1—C2		2 025 (6)		2 - C1	3	1.367	(6)
C1H1		0.9300	C1	2 С1 2—H1	2	0.930)
$C^2 - C^3$		1,430(7)	C1	2 III 3N1	2	1 333	, (6)
C^2 —Fe1		2 059 (5)	C1	3-C1	4	1.595	(6)
C2—H2		0.9300	Cl	4-02		1.208	(6)
$C_3 - C_4$		1 375 (7)	C1	4-03		1 318	(6)
C3—Fe1		2.038 (5)	C1	5—C1	6	1.437	(8)
С3—Н3		0.9300	C1	5—03	-	1.450	(6)
C4—C5		1.391 (8)	C1	5—H1	5A	0.9700)
C4—Fe1		2.031 (5)	C1	5—H1	5B	0.9700)
C4—H4		0.9300	C1	6—H1	6A	0.9600)
C5—Fe1		2.042 (5)	C1	6—H1	6B	0.9600)
С5—Н5		0.9300	Cl	6—H1	6C	0.9600)
С6—С7		1.396 (6)	C1	7—C2	2	1.367	(6)
C6—C10		1.407 (6)	C1	7—C1	8	1.390	(6)
C6—Fe1		2.029 (5)	C1	7—N1		1.424	(6)
С6—Н6		0.9300	C1	8—C1	9	1.390	(7)
С7—С8		1.412 (7)	C1	8—H1	8	0.9300)
C7—Fe1		2.053 (5)	C1	9—C2	0	1.393	(7)
С7—Н7		0.9300	C1	9—H1	9	0.9300)
С8—С9		1.426 (6)	C2	0—04		1.352	(6)
C8—Fe1		2.059 (4)	C2	0—C2	1	1.373	(7)
C8—H8		0.9300	C2	1—C2	2	1.390	(7)
C9—C10		1.432 (6)	C2	1—H2	1	0.9300)
C9—Fe1		2.043 (4)	C2	2—Н2	.2	0.9300)
С9—Н9		0.9300	N1	—H1N	l I	0.8600)
C10-C11		1.487 (6)	04	—H40)	0.8200)
C10—Fe1		2.031 (4)					
C5—C1—C2		110.0 (5)	03	—C15	—H15B	109.1	
C5-C1-Fe1		70.5 (3)	H1	5A—0	С15—Н15В	107.8	
C2-C1-Fe1		71.0 (3)	C1	5—C1	6—H16A	109.5	
С5—С1—Н1		125.0	C1	5—C1	6—H16B	109.5	
С2—С1—Н1		125.0	H1	6A—0	С16—Н16В	109.5	
Fe1—C1—H1		125.1	C1	5—C1	6—H16C	109.5	
C1—C2—C3		105.0 (5)	H1	6A—0	С16—Н16С	109.5	

C1_C2_Fe1	68 4 (3)	H16BC16H16C	109.5
$C_3 - C_2 - F_{e1}$	68 8 (3)	C_{22} $-C_{17}$ $-C_{18}$	119.8 (4)
C1-C2-H2	127.5	C_{22} C_{17} N1	119.6 (4)
C_{3} C_{2} H_{2}	127.5	C18 - C17 - N1	120 5 (4)
Fe1 - C2 - H2	126.9	C19-C18-C17	120.3(1) 119.7(5)
C4 - C3 - C2	108 5 (5)	C19-C18-H18	120.2
C4-C3-Fe1	70.0 (3)	C17-C18-H18	120.2
$C_2 = C_3 = Fe1$	70.0(3)	C_{18} C_{19} C_{20}	120.2
C4 - C3 - H3	125.7	$C_{18} - C_{19} - H_{19}$	119.7
$C_2 = C_3 = H_3$	125.7	C_{20} C_{19} H_{19}	119.7
Fe1 - C3 - H3	125.7	04-020-021	123 5 (5)
$C_{3}^{2} - C_{4}^{2} - C_{5}^{5}$	110.2 (5)	04 - C20 - C19	125.5(5)
$C_3 = C_4 = C_3$	70 5 (3)	$C_{21} = C_{20} = C_{19}$	117.0(5)
$C_5 = C_4 = F_{e1}$	70.3 (3)	$C_{21} = C_{20} = C_{13}$	110.7(5)
$C_3 = C_4 = H_4$	124.9	$C_{20} = C_{21} = C_{22}$	121.0 (5)
$C_5 = C_4 = H_4$	124.9	$C_{20} = C_{21} = H_{21}$	119.5
C_{3}	124.9	$C_{22} = C_{21} = H_{21}$	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123.7	$C_{17} = C_{22} = C_{21}$	120.3 (3)
C4 = C5 = C1	100.5(3)	C1/-C22-H22	119.9
$C_4 = C_5 = FeI$	(9.0(3))	C_{21} — C_{22} — H_{22}	119.9
$C_1 = C_2 = F_{e_1}$	09.2 (5)	C1 = Fe1 = C0	100.2(3)
С4—С5—П5	120.8	$C_1 = Fe_1 = C_{10}$	132.8(3)
	120.8	C_0 FeI C_1	40.54 (17)
FeI—C5—H5	125.9	CI = FeI = C4	107.1(2)
$C_{1} = C_{0} = C_{10}$	108.5(4)	$C_0 = F_0 = C_4$	107.1(2)
C/-Co-Fei	(0.9(3))	C10—Fe1—C4	128.7(2)
C10—C6—Fel	69.8 (3) 125.0	$CI \rightarrow FeI \rightarrow C3$	67.6 (2)
С/—С6—Н6	125.9	C6—FeI—C3	116.3 (2)
	125.9	C10—Fe1—C3	108.93 (19)
FeI—Co—Ho	125.0	C4—FeI—C3	39.5 (2)
C6	108.9 (4)	CI—FeI—CS	40.3 (2)
C6—C/—Fel	69.1 (3)	C6—FeI—C5	127.2 (2)
C8—C/—Fel	/0.1 (3)	Clo—Fel—CS	165.7 (2)
C6—C/—H/	125.6	C4—FeI—C5	39.9 (2)
C8—C/—H/	125.6	C3—Fe1—C5	67.6 (2)
FeI—C/—H/	126.8	CI—FeI—C9	119.6 (2)
C^{\prime} — $C8$ — $C9$	107.8 (4)	C6—Fe1—C9	68.80 (18)
C/—C8—Fel	69.7 (3)	Cl0—Fel—C9	41.16 (17)
C9—C8—Fel	69.0 (2)	C4—Fe1—C9	168.2 (2)
С7—С8—Н8	126.1	C3—Fe1—C9	131.33 (18)
С9—С8—Н8	126.1	C5—Fe1—C9	151.3 (2)
Fel—C8—H8	126.7	Cl—Fel—C7	130.1 (2)
C8—C9—C10	106.7 (4)	C6—Fe1—C7	39.98 (18)
C8—C9—Fel	70.3 (3)	C10—Fe1—C7	67.57 (18)
C10—C9—Fe1	69.0 (2)	C4—Fel—C7	116.4 (2)
C8—C9—H9	126.6	C3—Fel—C7	148.2 (2)
С10—С9—Н9	126.6	C5—Fe1—C7	107.6 (2)
Fe1—C9—H9	125.7	C9—Fe1—C7	68.12 (18)
C6—C10—C9	108.3 (4)	C1—Fe1—C8	110.5 (2)
C6—C10—C11	123.8 (4)	C6—Fe1—C8	67.93 (19)

C9—C10—C11	128.0 (4)	C10—Fe1—C8	68.23 (18)
C6-C10-Fe1	69.7 (3)	C4—Fe1—C8	149.3 (2)
C9—C10—Fe1	69.9 (3)	C3—Fe1—C8	170.53 (18)
C11-C10-Fe1	126.0 (3)	C5—Fe1—C8	117.5 (2)
O1—C11—C12	122.6 (4)	C9—Fe1—C8	40.70 (17)
O1-C11-C10	119.1 (4)	C7—Fe1—C8	40.17 (19)
C12-C11-C10	118.2 (4)	C1—Fe1—C2	40.6 (2)
C13—C12—C11	121.6 (4)	C6—Fe1—C2	150.3 (2)
C13—C12—H12	119.2	C10—Fe1—C2	118.6 (2)
C11—C12—H12	119.2	C4—Fe1—C2	67.6 (2)
N1-C13-C12	123.8 (4)	C3—Fe1—C2	40.8 (2)
N1-C13-C14	118.1 (4)	C5—Fe1—C2	68.5 (2)
C12—C13—C14	117.7 (4)	C9—Fe1—C2	110.12 (19)
O2—C14—O3	124.5 (4)	C7—Fe1—C2	169.2 (2)
O2—C14—C13	122.5 (5)	C8—Fe1—C2	131.7 (2)
O3—C14—C13	112.9 (4)	C13—N1—C17	128.3 (4)
C16—C15—O3	112.6 (5)	C13—N1—H1N	115.8
C16-C15-H15A	109.1	C17—N1—H1N	115.8
O3—C15—H15A	109.1	C14—O3—C15	118.5 (4)
C16—C15—H15B	109.1	C20—O4—H4O	109.5

Fig. 1

